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Using the method developed in [I] for solving the problem of the conditional stability of MacLaurin ellipsoids, it is proved that 
Jacobi ellipsoids are stable under Dirichlet conditions for all case when Jacobian ellipsoids exist. Q 2000 Elsevier Science Ltd. 
All rights reserved. 

It is well known that, in general, the problem of the stability of ellipsoidal, equilibrium figures has been formulated 
and solved by Lyapunov for the MacLaurin and Jacobi cases. 

Lyapunov’s proofs are based on the application of his own type of analogue of Routh’s theorem and reduce to 
proofs of the existence of a strict minimum of the functional of the transformed potential energy for the steady 
rotation which is investigated in each case. By applying this method, Lyapungv, in particular, shows that Jacobi 
ellipsoids are always stable subject to the condition that the perturbation satisfies the Dirichlet assumption on the 
ellipsoidal form of the fluid surface and the homogeneous vortex nature of the perturbed velocity field ‘/* rot v = 
{64(t), WZO), %G)). 

However, it was shown in [l] that, in the case of perturbations which satisfy the Dirichlet assumptions, the initial 
dynamical system in functional space becomes a system of ordinary differential equations for the components of 
rot v, the semi-axes of the ellipsoid a, b and c and the components of the angular velocityp, q and r in a moving 
frame of reference as functions of time. This, in turn, enables one to use the second Lyapunov method to solve 
the problem of the stability of the corresponding steady solutions, which avoids the need to carry out complex 
calculations associated with the study of the functional of the transformed potential energy for an extremum. 

The system of ordinary differential equations, into which the initial system in ordinary and partial derivatives 
is converted and which describes the dynamics of a self-gravitating fluid, has four first integrals (of the energy, the 
momenta, the constancy of the vortex intensity and mass) 

i(A,p’ +B,q2 +C,r2)+!-(A2mf +B20:+C2w:)+W+$(~2 +d2 +c2)=const 

(Alp+A~~1)2 +(Blq+E2a2)2+(CIr+C2c03)2 =const 

(0, lo)2 +(w, lb)2 +(w3 /c)~ = const 

abc = a&)Q 

(1) 

(2) 

(3) 

(4) 

Here 

dh 
W=+H, H+lj- 

&w 
(p(k) = (2 + h)(b2 + h)(2 + h) 

A ___(b2 -c212 4M b2c2 
I 

5 b2+c2 ’ 
A2 =-- 5 b2 +c2 WC nbc) 

where M is the mass of the fluid. 
This system admits of the particular solution 

x0 ={p=q=w, =02 =0 r=c+ =R, a=“~, b=bo, c=co) (6) 

which describes a Jacobi ellipsoid. A proof that this is stable (under the conditions mentioned above) will be given 
below. 

We know that the three parameters: 52, b&zo, c&o of a Jacobi ellipsoid are related by the two equations 
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where 

R 
ao Q -  

(7) 

2 OH 2 OH 2 OH 
P . . . .  , R . . . .  , a . . . .  (8) 

a 0 3a c o ~c b 0 ~b 

We take solution (6) for the unperturbed motion. In the perturbed motion, we put 

a=ao+a, b=b0+13, r= f~+~ ,  003=f~+r I (9) 

and retain the previous notation for the remaining variables. Substituting (9), taking account of relation (4), into 
integrals (1)-(3), we obtain the first integrals, corresponding to them, of the equations of the unperturbed motion, 
denoting them by V1, I:2 and Va, respectively. 

We now consider the function 

where 

v--2So - 2 (lO) 

M 
C 1 +C 2 = ~ - ( a  2 +b2), ~. = V/(X)- Vi(Xo) S= 

where n and v are certain real positive numbers. 
Taking account of the form of integrals (1)-(3), in the case of V (10) in a small neighbourhood Xo, we have, 

apart from second-order terms inclusive 

- C 1 r 2 + C202 V=[2SoldW+d- ~ I-2So~od(CIr+C2033)I+K,+K2 (11) 

+SoBI0q2 + SoB20~22 _ (BI0 q + B20£02 )2 

Here, if: = Wlc-od, --(ab), dV2 and dV3 are the linear parts of the functions 1"2 and V3 which correspond to the 
- _0";.0' 

increments (9) of the independent varmbles 

dV2 = z = 2So~d( Clr + C2to3) 

y--2 (12) 
L0 (J C~ \ a0 o0 J 

The linear.part of V (10), written in the square brackets, is zero by virtue of Eqs (7). The quadratic form with 
respect to ti, b, k,p, q, 001, co2, Kl is positive definite by virtue of the fact that Co < a0, Co < b0 and by the definitions of hi and Bi and S. The form of K2 is the form with respect to the remaining variables ct, 13, ~, 11. We shall consider 
it here but, for convenience, as the form with respect to 1053n, where z andy are defined by formulae (2), rather 
than the form with respect to (ct, 13, ~, 11). This has no effect whatsoever on the result since the property of positive 
definiteness is invariant with respect to a no-degenerate change of variables. If account is taken of expression (12), 
the form of K2 in the variables (a, 13, z, y), takes the form 

So((l~laal~( ° + 3 M " 2 / c t 2  +(l~'bb I~o +3MD2)112 +21~'ab [~o ~l+ny2+(v-~)z2+... (13, 

Here, X0 = (ao, b0), and the products of az, cry, ~ ,  13y by the hounded coefficients which depend on ao and bo are 
denoted by dots. It is clear that, in the case of a positive-definite form with respect to a and 13 with a matrix 
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+ 3M f22 

g',,h I~,, 

Wah 12c ~ 

- +3Mf~  2 
Wbh 12o 5 

(14) 

the numbers  n and v can be chosen such that the form of (13) turns out to be positive definite as well as V (10) 
with these values of (n, v). This will mean that V(10) is the Lyapunov function for this problem and that the steady 
rotat ion (6) is stable. 

It is easily shown using elementary calculations that matrix (14) is positive definite. 
Taking expression (5) for W(a, b, c) and the expression for W(a, b) into account, we obtain, after differentiation, 

in explicit form: the second derivatives of Wat  the point (a0, b0) appearing in (14) and, also, starting from Eqs (7), 
an expression for ~ 2 .  

Using these expressions, we obtain formulae for the elements rnij (i, j = 1, 2), m22 = m lllao=bo, m12 = m21 of 
matrix (14). In this case, as is easily verified, it is found that 

+ b° m12 M Sq)~ a + 
2.3  2 D~-(~.___.~) 

mll a 0 = 5 . 4  02(co2 + ~,)(ag + 9~) 
d~ 

2-3 M2 [ Df  ().) 
m22 + b° 0 = 5 .4  "¢p~b2(c 2 +k)(bg +?~)ark 

where D~ are two polynomials  of the fourth degree in L with coefficients which are functions of a0, b0, co, and all 
of these coefficients are positive when Co < a0, Co < b0; the same also applies to D2 = D~la0= %. 

The relat ions 

~ 0 3M f~2 bo Waa + > lizo b l~,~b + ~2 a.__o_o - - ,  > I7¢0 b bo 
5 a o 

1~0 + 3M ~2 > _i~,,0 bo , i~,0 + 3M a 2  > i~,0 a0 
5 a 0 5 - ab ~-0 

therefore  hold. It follows from these that, first, both diagonal elements of (14) are positive and, second, that 

So that  (14) is a posit ive-definite matrix. In turn, the positive definiteness of the form (13) follows from this, and 
this means  that V(10), for certain sufficiently large n and v, is greater  than zero. Hence,  (6) is a stable solution of 
the system of ordinary differential  equations which the initial system with an infinite number  of degrees of f reedom 
in the case of Dirichlet  condit ions becomes, and the Jacobi ellipsoids are always conditionally stable (with respect 

. . . .  2 2 to a, b, c ,p ,  q, r, ~Ol, m2, m3) when they are defined (that is, when the eccenmcmes  l = 4(a - c )/a ~ 10 = 0.8126). 
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